Exploring to learn visual saliency: The RL-IAC approach
نویسندگان
چکیده
The problem of object localization and recognition on autonomous mobile robots is still an active topic. In this context, we tackle the problem of learning a model of visual saliency directly on a robot. This model, learned and improved on-the-fly during the robot’s exploration provides an efficient tool for localizing relevant objects within their environment. The proposed approach includes two intertwined components. On the one hand, we describe a method for learning and incrementally updating a model of visual saliency from a depth-based object detector. This model of saliency can also be exploited to produce bounding box proposals around objects of interest. On the other hand, we investigate an autonomous exploration technique to efficiently learn such a saliency model. The proposed exploration, called Reinforcement Learning-Intelligent Adaptive Curiosity (RLIAC) is able to drive the robot’s exploration so that samples selected by the robot are likely to improve the current model of saliency. We then demonstrate that such a saliency model learned directly on a robot outperforms several state-of-the-art saliency techniques, and that RL-IAC can drastically decrease the required time for learning a reliable saliency model.
منابع مشابه
A Novel Approach to Background Subtraction Using Visual Saliency Map
Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملGraph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملJust Noticeable Difference Estimation Using Visual Saliency in Images
Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...
متن کاملA Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کامل